
International Journal of Theoretical Physics, Vol. 33, No. 7, 1994 

Duality Transformations in Electrodynamics 
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Received March 22, 1993 

Electrodynamics admitting a duality transformation group is considered. For 
such an electrodynamics an extension of the classical Rainich-Misner-Wheeler 
theory is presented. 

1. I N T R O D U C T I O N  

It is well known (Rainich, 1925; Misner and Wheeler, 1957) that the 
source-free Einstein-Maxwell  equations describing a linear Maxwell elec- 
tromagnetic field f j = - f / i ,  i , j  = 1 . . . . .  4, in a space-time of metric gij are 
invariant under the group of  duality rotations defined by 

�9 ' t i 
x " = x ' ,  g u = g u ,  f i j = f i j c o s c p + i * f ~ j s i n ~ p ,  cp~R (1.1) 

where 

l kl  
*fJ :=  - ~  x / ~ ' i J k , f  , g"=detl]gu II, x' 

are local coordinates�9 In terms of  3-vector fields E, B, D, and H (see 
Section 2) the duality rotation of  the electromagnetic field can be written 

E'  = E c o s  ~p + H sin ~o, H ' =  - E  sin cp + H  cos cp (1.2) 

or 

D'  = D cos tp + B sin cp, B ' =  - D  sin cp + B cos cp (1.3) 

It  is also known that the invariance of  the source-free Einstein-Maxwell  
equations under the duality rotation group (1.1) leads to a conserved 
quantity (Deser and Teitelboim, 1976; Fushchich and Nikitin, 1983; 
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Przanowski and Maciolek-Nied~wiecki, 1992). As shown by Deser and 
Teitelboim (1976), the duality transformation in the sense of (1.1) does not 
exist in the case of Yang-Mills fields. 

On the other hand, it has been shown (Salazar et al., 1987), that one 
can find a wide class of solutions to the Einstein-Maxwell equations within 
nonlinear electrodynamics which admits the duality rotation. These solu- 
tions generalize the well-known NUT solutions with A. Moreover, it also 
has been demonstrated (Salazar et al., 1989) how the problem concerning 
the propagation of signals in nonlinear electrodynamics can be consider- 
ably simplified if the invariance under the duality rotation is assumed. 

In the present paper we consider a natural generalization of the duality 
rotation group which is called the duality transformation group (Sections 2 
and 3). Then we find all models of electrodynamics which admit the duality 
transformation group. In particular, it is shown that for any (linear or 
nonlinear) electrodynamics which: (i) admits a duality transformation 
group, (ii) satisfies the dominant energy condition, and, (iii) corresponds to 
the Maxwell electrodynamics for weak fields, the duality transformation 
group appears to be exactly the duality rotation group (Section 4). This 
result has been previously found by Salazar et al. (1987). Here it is 
considered from the general viewpoint. Finally, in Section 5 we give an 
extension of the classical Rainich-Misner-Wheeler already unified theory 
(Rainich, 1925; Misner and Wheeler, 1957) to the case of linear or 
nonlinear electrodynamics satisfying the conditions (i)-(iii). 

The problem of a conservation law connected with the duality trans- 
formation group in nonlinear electrodynamics will be considered elsewhere. 

2. (3 + 1)-FORMALISM IN ELECTRODYNAMICS 

We deal with a vacuum electromagnetic field in a space-time 3//4 
endowed with metric gij, i, j = 1 . . . . .  4, of the signature ( + + + - )  (Born 
and Infeld, 1934; Plebafiski, 1968; Biatynicki-Birula and Biatynicka-Birula, 
1975; Salazar et al., 1987). The electromagnetic field is described by the 
potential A; and by the antisymmetric tensor piJ (p"J = _pji). Then the 
Lagrangian of the electromagnetic field is assumed to be of the form 

1 L = - ij -~ p ~ j  + K(P, Q) (2.1) 

where 

1 
f i j  '---- OiAj -- OjAi, Oi :=-Ox i ; P :=-~pijp ij, 

i ,p,j == - $  x / T g  Euk,p k', 

1 
Q '= ~Pu ,piy 

{2.2) 
g,=det[Igi, II 
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C~jkt is the totally antisymmetric Levi-Civita tensor; the function K(P, Q) is 
called the structural function. The total action for the gravitational electro- 
magnetic field reads 

; ] S --~ d 4 x  ] ~  (R + 2A) + L (2.3) 

where R denotes the curvature scalar and A is the cosmological constant. 
Performing the variation of S with respect to g~j, A~, and p~J and then 

using the least action principles 6S = 0, one gets the following set of  
equations: 

Einstein equations 

1 
gi: - ~ Rg~j = -87rT u + Agi: (2.4) 

where R~j is the Ricci tensor and Tij is the energy-momentum tensor 

Tij = P~fjk + Lgu (2.5) 

Otifjk I = 0, p i j j  = 0 (2.6) 

where the square bracket stands for the antisymmetrization and the semi- 
colon denotes the covariant derivative. 

"Material equations" 

~K dK ~: = -~p , j  + - ~  *p,: (2.7) 

We now consider a (3 + 1)-decomposition of  the space-time M4 

M4 = M3 x MI,  dim M3 = 3, dim M1 = 1 (2.8) 

The metric V~v (#, v = 1, 2, 3) on M3 is defined by 

7uv = g~,v - -  g4ug4_....__~v (2.9) 
g44 

Define the following 3-vectors (compare with Landau and Lifschitz, 1973) 

) D u = - x / - ~ p  4~', H ,  = ~ x/~e~,wp "~ (2.10a) 

1 
E ,  = - A ~ ,  B" = - -  : ' ~ :  2"v/~ , , ,  (2.10b) 

:=det[ly,, tl; Creek indices run through 1, 2, 3. Then one finds easily the 

Maxwell equations 
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Maxwell equations (2.6) in terms of 3-vectors to be of the form 

04(%//~B ,u) -~- E#wrOvEa = O, 

04(~/~D u) -- E~vaOvUa = 0, 

Moreover, from (2.7) one gets 

Ov(x/~BU ) = 0 (2.11a) 

Ov(x//-~D ~) = 0 (2.11b) 

OK OK 
f j  = 2 *f j  = 2 ~._i~ (2.12) @i+ , 

Consequently, (2.10a), (2.10b), and (2.12) lead to the following material 
equations: 

0 ( -S 44K) ' 
Eu = 0D u 

Simple but tedious manipulations give 

O 

1 1 1 
P = - ~ D "  D - 2g44 H"  H + D ' ( H  • n) - ~ ( H  x n) " (H  • n) 

i 
Q = ~ - ~ 4 4  D ' H  

where the natural 3-vector notation is used, i.e., 

D" D.'= 7u~D"D ~, 

and 

(2.13) 

(2.14) 

D �9 H..= 7~,vD'H ~, . . . .  (H X n)~',=~77euV'~Hvn,~ 

g&r 
g44 

Greek indices are manipulated by 7pv, Y uv. (One can easily show that 
n u = g4,, 7 ,v=  guy.) Analogously we find the invariants 

1 1 F,=.~f.jff,=2g441 .. 1 E - E + ~ B - B + B ' ( E x n ) + ~ ( E x n ) ' ( E x n )  

i (2.15) 
1 , i - - E ' B  

a : : ~ f i j  ~e] : N/--g44 

Finally, for completeness, we can also write the Maxwell equations (2.1 la) 
and (2.11b) in 3-vector notation (compare with Landau and Lifschitz, 
1973) as follows: 

104(N/ /~B)  + rot E = 0, div B = 0 (2.16a) 
,5 
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where 

1_1_ C34(N//~D) __ rot  H = 0, div D = 0 

Tit 

where 

1 1 
(rot E)it = ~ EIt~=0~E., div B = ~ Oit(n//~Bit), 

Then the energy-momentum tensor (2.5) can be found to be 

1 1 1 
T44 = -- --N/'-~-~44 M, T4v - -  4 - - g 4 4  (D x B ) ,  Tit 4 x / - g 4 4  

1 
- -  [D"Ev + BItH, -- (D. E + B" H -- M)6~] 
d-- g44 

(2.16b) 

etc. 

( H  x E)it 

(2.17) 

M : = B "  H -  ~ 4 4 K  (2.18) 

Now as the second of relations (2.13) gives H as a function of gis, B, and 
D, we will consider M to be a function M = M(gi j ,  D, B). Then from (2.13) 
and (2.18) one gets 

OM a M  
E~, = OD u , Hit = OB u (2.19) 

For the Maxwell equations we get 

Its,,_ f OM\  04(~/~n 'u) -q-( Ovt~~)=O , 0it (%/~n #) = 0  (2.20a) 

(aM =0 04(~/7D ") -- E"v'~ov \ O B , ]  , Oit(~//-~D u) = 0 (2.208) 

Note that if one considers (w/~B, w/~D) to be the canonical variables 
(compare with Biatynicki-Birula and Biatynicka-Birula, 1975), then w/TM 
is the Hamiltonian. We have also M = D" E + ~ 4 4 L .  

3. DUALITY TRANSFORMATIONS 

We consider a one-parameter local group of transformations G1, 

x 'i = x", g~j = g;j, D' = D'(x', D, B; z), B' = B'(x i, D, B; z) 

z ~ ( - e , e )  c ~ ,  e > 0  (3.1) 

leaving the Maxwell equations (2.20a) and (2.20b) and the Einstein equa- 
tions (2.4) invariant. To find this group we use the jet space formalism 
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(Ibragimov, 1985; Otver, t986). The infinitesimal operator of G~ reads 

(3,2) 
~ = OD'" I ' ~t u = OB'" ~=o 

Then the second prolongation of X takes the form 

O 0 
x~ = x + d,(~,) �9 ~ + d,(~") aS~ 

0 0 
+ dflj (~ )  �9 ~ + didj(t/") �9 0B~ (3.3) 

where di denotes the total derivative 

d/.'=Oi + i + B~' + s~, u, ...,, + B~,...) (3.4) 

and D~, B~, De . and B u stand for appropriate coordinates in a 
I I  I . . , l s ~  i l  I , . . i  s 

relevant jet space, 

DtI:=OiD u, De " '=Ou~ i,D u, (3.5) 
t t  1 "" " l S  """ " " " 

Denote the Einstein-Maxwell equations (2.4), (2.20a), and (2.20b) by 

= 0 (3.6) 

Then the invariance condition of (3.6) under G1 reads 

X2 ~ =o = 0 (3.7) 

where I~ = 0 means "restricted to ~ = 0." 
The invariance condition (3.7) applied to  the second equation of 

(2.20a) gives 
[r/uOu] In ~ + d.(r t#)]l~ =o = 0 (3.8) 

Hence 

( D~ Orl",B,, 0r/u' I tlUOu ln,v/-~ + Ourl~' + . - ~ - t -  u-~71 " = ~  = 0  (3.9/ 

Then the second equations of (2.20a) and (2.20b) yield 

[ (11" or", ,. 
Dz~ Oq 3 + D~ Oql 20q2 

+ B I  0~/l 0~/: 2 0~/3-11 
- ~ +  BI -~+( -BUOulnv / ' y -B I -Bz ) -~] I s~=o=O (3.10) 
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0q" 0q u 
=0 ,  - - = 0  for # r  (3.11a) 

OD v OB" 

Oq I 0)12 0)13 D11 DI 2 073 
OD 1 8D 2 - o D  3, OB 1 - o B  2 OB 3 (3.11b) 

0,3_  0,3) 003 OBSj~3ulnv/-~ + d~q" = 0  (3.1 lc) 

(Remember that in the present section the partial derivative 0 r is consid- 
ered in the sense of the jet space formalism.) From (3.1 la) and (3.1 lb) one 
infers that 

rl ~' =f (x~)O s' + h(x ' )B"  + P'(x ~) (3.12) 

where f(x~),  h(x ~), and P(x ~) are some functions of their arguments. Then 
substituting (3.12) into (3.11c), we get 

~?,f= 0, d,h = 0 (3.13a) 

l"8 u In n/~ + O, lu = 0 (3.13b) 

Finally, 

~'  = f ( x4 )D  ~' + h(x4)B ~' + lU(x i) (3.14) 

with l"(x i) satisfying equation (3.13b). 
Analogously, the invariance condition (3.7) applied to the second 

equation of (2.20b) gives 

r • = m(x 4)D s' q- p(x 4)B" + s~(x i) (3.15) 

where m(x4), p(x4), and s~(x ~) are some functions of their arguments and 

s"O, In n/~ + 3, s~' = 0 (3.16) 

The invariance condition for the Einstein equations (2.4) yields 

X T  9 = 0 (3.17) 

It is a simple matter to show that from (3.17) under (3.2), (3.14), and 
(3.15) one gets 

X M  = 0 ( ~*. M is invariant under G~) (3.18a) 

h + m = 0, l ~ = 0, s" = 0 (3.18b) 

Finally, straightforward but rather long calculations show that the invari- 
ance condition (3.7) with (3.14), (3.15), (3.18a), and (3.18b) when applied 
to the first equations of (2.20a) and (2.20b) give 

D~O4f - B"O4rn = O, Dr'04 m -k- BuO4p = 0 (3.19) 
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i , e ,~  

m(x 4) = a, p(x 4) = b, f ( x  4) = c, a, b, c = R (3.20) 

Collecting these results, we find that 

X = (aD ~ + bB ~) 0-~ + (cDU - aBU) 
OB ~ 

~ ba]~St(2;R ) (3.21) 

where s/(2; R) is the Lie algebra of  the Lie group SL(2; •). Thus one 
arrives at the following important result: 

Theorem 3. I. Let Gr be an r-parameter local Lie group of  transforma- 
tions of  the form 

I X'i -~" Xi~ g u  = gij 
(3.22) 

D' = D'(x i, D, B; r l , .  � 9  ~r), B' = B'(xt, D, B; ~l . . . .  , T,) 

where 2 i , . - . ,  zr ~R are the group parameters. 
Then the Einstein-Maxwell equations (2.4), (2.20a), and (2.20b) are 

invariant under G, iff: 
(i) Gr is a local subgroup of  the group SL(2; R), 

x'~ = xi, gi~ = gi: 

D' = a11D + al2B, B'=a21D+az2B 

a12 1 
det a1211 a22 = 

(ii) M is an invariant of  G~. 

(3 .23)  

Remark�9 We deal only with the connected groups. 

It is evident that our theorem has been proved in some fixed coordi- 
nate system. Now a crucial point is whether the invariant group Gr is 
independent of  the coordinate system. To answer this question we consider 
the invariance condition for M, (3.18a), in the form [see (2.18)] 

X[B" H - - ~ - ~ K ( P ,  O)] = 0 (3.24) 

Then by simple but long calculations, using (2.13) and (2.14), one finds 
that the condition (3.24) for X given by (3.21) reads 

2a e 

�9 OK z (OK~ZlQ 2 0 K O K p ~ + i e Q = O  (3.25) 

+\0Q:  I + ) 
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Concluding, we can state that M is an invariant function for Gr iff the 
condition (3.25) holds for each infinitesimal operator of Gr. Now we want 
this condition to be satisfied in an arbitrary coordinate system. As K and 
P are scalars and Q is a pseudoscalar, the condition (3.25) is satisfied in an 
arbitrary coordinate system iff [compare with Biaiynicki-Birula (1983)] 

b + Q + 2 - ~ - ~ P ~ + e Q = O  (3.26a) 

and 

a ~f iP  +~-QQ = 0  (3.26b) 

Note that using (2.1), (2.2), (2.7), and (2.15), one can write (3.26a) and 
(3.26b) in the following form: 

bG + cQ = 0 (3.27a) 

a(K - L) = 0 or a(B" H - E" D) = 0 (3.27b) 

Then we arrive at the following theorem: 

Theorem 3.2. Let Gr be an r-parameter local Lie group of transforma- 
tions defined by (3.22). 

Then the Einstein-Maxwell equations (2,4), (2.20a), and (2.20b) are 
invariant under Gr in arbitrary coordinate system iff: 

(i) Gr is a local subgroup of SL(2; E) of the form (3.23). 
(ii) The conditions (3.26a), (3.26b) [or (3.27a), (3.27b)] are satisfied 

for each element of the Lie algebra gr of Gr, 

b ~gr 
- a  

The maximal local group which Theorem 3.2 deals with we call the 
group of  duality transformations and we denote it by DT. One easily shows 
that in terms o f f j  and Pu the general duality transformation (3.23) can be 
written as follows: 

f ; j  = az2f: -- ia21 *Po 
(3.28) 

* " ia12fo + *Pij Piy = a l l  

4. ELECTRODYNAMICS ADMITTING THE DUALITY 
TRANSFORMATION GROUP 

In the preceding section it has been shown (see Theorems 3.1 and 3.2) 
that X M  = 0 in an arbitrary coordinate system iff (3.26a) and (3.26b), or 
equivalently equations (3.27a) and (3.27b), hold. Consider an algebraically 
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general electromagnetic field, i.e., 

F + G  # 0  (4.1) 

By (2.2), (2.7), and (2.15) we have 

F + G # O  r P + Q # O  (4.2) 

It is well known (Plebafiski, 1974; Salazar et al., 1987) that if P + Q # 0, 
then one can choose a coordinate system in such a manner that at some 
point of M4 

Ilgo II = diag[I 1, 1, 1, - 111, D = (0, 0, D), H = (0, 0, H), D, H e R  

(4.3) 

Then by (2.14) 

P = ~ (H 2 - D2), Q = i D H  (4.4) 

From (2.10a), (2.10b), (2.7), and (4.3) one finds 

E = (0, 0, E), B = (0, 0, B), E, B e R  (4.5) 

and consequently by (2.15) 

F = ~ (B 2 - E2), G = iEB (4.6) 

Now M can be considered to be a function of D and B, M = M ( D ,  B),  and 
by (2.19) we have 

3M aM 
E = aD ' H = aB (4.7) 

Finally, using (3.27a), (3.27b), and (4.3)-(4.7) one finds that equations 
(3.26a) and (3.26b) read 

t~M aM 
bB ~ + cD -~-  = 0 (4.8a) 

( a B - ~  a D ]  0 (4.8b) 

Simple analysis shows that equations (4.8a) and (4.8b) give two essentially 
distinct solutions, which, without any loss of generality, can be written as 
follows: 

a = 1, b = 0 = c; M = M ( D  �9 B)  (4.9) 

o r  

a = 0, b = 1, c # 0; M = M(�89 2 - cD2)) (4.10) 
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It is evident that in the case described by (4.9) if D = 0, then H = 0 and 
this contradicts the assumption that D and H are independent variables. 
Thus we are left only with the case described by (4.10). Moreover, from 
(4.10) it follows that any DT group appears to be a one-parameter Lie 
group. Given M of the form (4.10), one finds B from (4.7) to be a function 
of D and H, B = B(D, H). Then using (2.18) with g44 = - 1 one gets K as 
a function of D and H, 

K = HB(D, H) - M(D, B(D, H)) (4.11) 

Then from (4.4) we obtain (changing eventually coordinates of the 3-space) 

O =[(e2 02)l/2 p]l/2, H=[(P2-Q2)I/2+P] 1/2 (4.12) 

Substituting (4.12) into (4.11), one gets the structural function K = K(P, Q) 
which satisfies equations (3.26a) and (3.26b). 

Now we are able to find the general element of any DT group. From 
(4.10) it follows (Plebafiski and Przanowski, 1988a) that for a fixed c any 
dement of the DT group reads 

cosh(v/~z ) sinh(x/~z) 

exp{z 0 c ~ }=Ucsinh(x/~z) v/~ ~DT, zER (4.13) 
,fi cosh(,fi0 

Remark. In our previous paper (Plebafiski and Przanowski, 1988a) 
there is an error in the definition of the scalar product (v[v). The correct 
definition reads (vlv)--+K~svivL Consequently, formula (2.25) of that 
paper takes the form z = (x + y + x ^ y)/[ 1 + (xly)]. 

Here is the place to examine the model of electrodynamics which 
admits the DT group from the physical viewpoint. 

First, one usually assumes that the dominant energy condition holds, 
i.e., for every nonvanishing electromagnetic field and for every timelike 
vector u ~, uiut < O, 

Tiju~u j > 0 and the vector T~ju j is nonspacelike (4.14) 

[For the energy conditions see Hawking and Ellis (1973) and Guzm~in- 
Sfinchez et al. (1991).] 

It is an easy matter to show (Salazar et al., 1987; Plebafiski and 
Przanowski, 1992) that with M given by (4.10) the dominant energy 
conditions (4.14) are satisfied iff 

dM 
M > y ~ y  >0  for ( D 2 + B 2 ) ~ 0  (4.15) 

where y , = I ( B 2  - cD2). 
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Then we find that the condition (4.15) can be satisfied only if c < 0. 
Therefore taking in (4.13) v/~z =itp, ~o~R, and x / ~ =  i x / r ~  one gets the 
group which can be called the generalized duality rotation group GDR, 

GBR= I cos 0 sine ]l t 
, ~ (4.16) 

cos o 
Second, it is also physically reasonable to assume that an electrodynamics 
corresponds to the Maxwell electrodynamics for weak fields. This means 
that M(D, B) is of the form 

M(D, B) = �89 2 + B 2) + o(D 2 + B 2) (4.17) 

Comparing this with (4.15), we have c = - 1  and then one finds 
M = M(D, B) to be 

/1 2 2 x dM 
M(0) = 0, lim = 1 

y~0 dy  

1 y >0;  y : = ~ ( D  2 + B  2) 
(4.18) 

dM 
M >_ y---~y > 0 for 

Moreover, with c = - 1  the generalized duality rotation group appears to 
be the duality rotation group DR, 

DR = -sinq~ cos , ~0eN (4.19) 

Therefore the transformation of D and B is given by (1.3), which implies 
also (1.2). In terms of f~j and p~-j the duality rotation can be written as 
follows [see (3.28)]: 

f l y  = f i j  COS ~0 + i *Pij sin cp 
(4.20) 

* " *PoC~ +Mss in  p;j = ~p cp 

Collecting results, one arrives at the following fundamental theorem: 

Theorem 4.1. Let M satisfy the conditions (4.18). Then it generates an 
electrodynamics which: 

(i) Admits a D T  group. 
(ii) Satisfies the dominant energy condition (4.14). 

(iii) Corresponds to the Maxwell electrodynamics for weak fields. 

Moreover, the D T  group appears now to be the DR group. Con- 
versely, any electrodynamics satisfying the conditions (i)-(iii) is generated 
by M of the form (4.18). 
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This result was found by Salazar et al. (1987). Here we have proved it 
in the whole generality. 

Examples .  (A) Maxwell electrodynamics. Here 

M = 1 (D 2 + B2 ) (4.21) 
g 

Then 

E = D,  H = B; K = P, f~j  =Pis ,  L = - F  (4.22) 

(B) Born-Infeld nonlinear electrodynamics (Born and Infeld, 1934; 
Plebafiski, 1968; Biatynicki-Birula and Biatynicka-Birula, 1975; Salazar et 

aL, 1987, 1989). Now we put 

M = b 2 { [ 1  + b - 2 ( D 2 + B 2 ) ]  ' / 2 -  1}, 0 ~ b ~  (4.23) 

Then by (4.4), (4.7), and (4.11) one gets 

K = b z - [(b 2 + D  z) �9 (b z - H2) ]  1/2 = b 2 - (b 4 - 2b2P + Q2)1/2 (4.24) 

Finally, as 

L = D E  - M (4.25) 

(4.6), (4.7), and (4.25) yield 

L = b 2 - [(b z - E 2) �9 (b 2 + B2)] 1/2 = b 2 _ (b 4 q_ 2b2F + G 2) 1/2 (4.6) 

5. AN EXTENSION OF THE RAINICH-MISNER-WHEELER 
THEORY 

The famous "already unified field theory" of  Rainich, Misner and 
Wheeler gives, in terms of  the space-time geometry, necessary and sufficient 
conditions for a space-time to admit the Maxwell algebraically general 
electromagnetic field without sources (Rainich, 1925; Misner and Wheeler, 
1957; Witten, 1962; Przanowski, 1983; Hammon,  1990). The crucial point 
in this theory appears to be the fact that the Maxwell electrodynamics 
admits the duality rotation group (compare also with Deser and Teitel- 
boim, 1976). Therefore the natural question arises whether one can extend 
the classical Rainich-Misner-Wheeler  theory to the case of  any electrody- 
namics satisfying the conditions (i)-(iii)  of  Theorem 4.1. This problem was 
solved in our previous work (Plebafiski and Przanowski, 1992). In the 
present paper we give a slightly improved version of that work. [For an 
application of  the extended Rainich-Misner-Wheeler  theory see Salazar et 

al. ( 1987).] 
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First, using the results of our previous considerations, one can prove 
the following theorem: 

Theorem 5.1. Let a space-time geometry satisfy the following condi- 
tions: (a) 

1 
c'Jcjk = -4 cJ'cj,,~'k, c 'Jc, j  ~ o (5.1) 

where C,j,= Riy - �88 
(b) The curvature scalar R is a function of  I.'= (CqCq) I/2, R = R(I), 

such that 

dR 
--~ - 2 # 0 (5 .2)  

(c) CuvivJ< 0 for some nonspacelike vector v i, 

1 l im R(I) (5 .3)  R + 4A -< 0 with A .'= - ~ ~-, 0 

Then the function M = M(y)  defined by the relations 

1 
M = ~ (21 - R - 4A) (5.4a) 

y = I e x p  - ~  I - I  dI ,1 (5.4b) 

where the integral constant is taken so to give 

dM 
lira = 1 (5.4c) 
y~0 ~ 

defines an algebraically general "electromagnetic field" according to the 
1 2 procedure described in the preceding sections with y g(D + B2). This 

field satisfies the Einstein equations (2.4) and the dominant energy condi- 
tion (4.14), and it is defined with accuracy to the duality rotation (4.20) 
with q~ being now an arbitrary function on the space-time. Moreover, the 
"'electrodynamics" generated by the M corresponds to the "Maxwell 
electrodynamics" for weak fields. 

We use quotation marks because Theorem 5.1 does not decide if the 
Maxwell equations (2.6) are satisfied. 

Examples. (A) Let 

R(I) = - 4 A  (5.5) 

Then by (5.4b) 

y = cI, 0 < c = const (5.6) 
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Consequently (5.4a) gives 

1 
M = ~ c c Y  

From (5.4c) and (5.7) one gets c = 1/4, and finally 

M = y ,  y = ~ ( D  2 + B  2) 

This is of  course the case of the Maxwell electrodynamics. 
(B) Assume that 

R(I)  = - 4 A  - 2[(12 + c)1/2 _ x/~] ' 

Then one finds M to be 

M = bE[(1 + 2b -2y) 1/2 _ 1], 

(5.7) 

(5.8) 

II i~ 0 0 (5.12) ds2=gabea@eb' IIg~ I[ = 0 0 

0 0 1 0 

For details see Plebafiski (1974) and Plebafiski and Przanowski (1988b).] 
Define the following 2-form: 

~=e I ^ e = ~ ~ i A x  ^ dx: (5.13) 

By the virtue of (5.11) the 2-form ~ is defined within to the sign. Define 

1 2 This M [with y = ~(D + B2)] generates the Born-Infeld nonlinear electro- 
dynamics. 

Now, as is done in the classical Rainich-Misner-Wheeler theory, we 
should find the conditions which assure that the Maxwell equations (2.6) 
are satisfied. First, it is well known (Plebafiski, 1974) that if the conditions 
(5.1) are satisfied, then there exists a null tetrad (e 1, e 2, e 3, e 4) such that 

1 Cabea(~e b = "~ I(e 3 @ e  4 + e 4 @  e 3 _ e 1 @ e  2 - -  e 2 @ e  l) 

(5.11) 
a , b = l  . . . . .  4 

[A nul__l tetrad is defined to be four 1-forms (e 1, e 2, e 3, e4), e I = e 2, e 3 = e 3, 
and e4=  e 4 (where the bar stands for the complex conjugation) such that 
the space-time metrix ds 2 reads 

b:=~ c TM ( 5 . 1 0 )  

0 < c = const (5.9) 
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the l-form ~ by 
_ i (  I ij 4y a,= -~y~ j*~ik + - f  *~iJ,j~ikldx e (5.14) 

where y is defined according to (5.4). 
Note that in the case of the Maxwell electrodynamics 

= - i ( U J j  *~ik + *UJj~k) dx k 
(5.15) 

Cim cm J; t 
= --N/--gEuIk 12 d xk 

With all this, one can prove the following theorem: 

Theorem 5.2. Let the assumptions of Theorem 5.1 be satisfied and let 

d~ = 0  (5.16) 

Then the space-time admits the existence of an electromagnetic field such 
that the Einstein-Maxwell equations are fulfilled. The electromagnetic 
2-form is given by 

1 o~,=~(fj + *p,j) dx i ̂  dx I 
(5.17) 

dM *~ij) dx~ ̂  dxY = ~ ( 2Y) '/Z e'~ + c'~ +-~y 
t '  

where y and M(y) are defined as in Theorem 5.1; q~ is any solution of the 
equation 

=d~b (5.18) 

and ~b0 is an arbitrary real constant. 

It is evident that any arbitrary real parameter q5 o can be identified with 
the parameter ~o of the duality rotation group. Theorems 5.1 and 5.2 gener- 
alize the analogous results of the classical Rainich-Misner-Wheeler theory. 

ACKNOWLEDGMENTS 

One of us (M.P.) is indebted to M. Dunajski, B. Rajca, and J. Tosiek 
for their interest in this work. We are also grateful to B. Rajca and J. 
Tomaszewski for assistance in preparing the text for publication. 

R E F E R E N C E S  

Bialynicki-Birnla, I., and Biaiynicka-Birula, Z. (1975). Quantum Electrodynamics, Pergamon 
Press, Oxford. 

Bialynieki-Birula, I. (1983). Nonlinear electrodynamics: Variations on a theme by Born and 



Duality Transformations in Eleetrodynamics 1551 

Infeld, in Quantum Theory of Particle and Fields, birthday volume dedicated to Jan 
Lopuszafiski, B. Jancewicz and J. Lukierski, eds., World Scientific, Singapore. 

Born, M., and Infeld, L. (1934). Proceedings of the Royal Society A, 144, 425. 
Deser, S., and Teitelboim, C. (1976). Physical Review D, 13, 1592. 
Fushchich, V. I., and Nikitin, A. G. (1983). Fisika Elementarnyh ~astic i Atomnovo Jadra, 14, 

5. 
Guzmfin-Shnchez, A. R., Plebafiski, J. F., and Przanowski, M. (1991). Journal of Mathemat- 

ical Physics, 32, 2839. 
Hammon, K. S. (1990). International Journal of Theoretical Physics, 29, 1127. 
Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time, 

Cambridge University Press, Cambridge. 
Ibragimov, N. H. (1985). Transformation Groups Applied to Mathematical Physics, Reidel, 

Boston. 
Landau, L. D., and Lifschitz, E. M. (1973). Teoria Polia, Nauka, Moscow. 
Misner, C. W., and Wheeler, J. A. (1957). Annals of Physics, 2, 525. 
Olver, P. J. (1986). Applications of Lie Groups to Differential Equations, Springer-Verlag, New 

York. 
Plebafiski, J. F. (1968). Lectures on Non-Linear Electrodynamics, Monograph of the Niels 

Bohr Institute Nordita, Copenhagen. 
Plebafiski, J. F. (1974). Spinors, Tetrads and Forms, unpublished, CINVESTAV, Mexico City. 
Plebafiski, J. F., and Przanowski, M. (1988a). Journal of Mathematical Physics, 29, 529. 
Plebafiski, J. F., and Przanowski, M. (1988b). Acta Physica Polonica B, 19, 805. 
Plebafiski, J. F., and Przanowski, M. (1992). Rainich-Misner-Wheeler conditions in nonlin- 

ear electrodynamics, in Symmetries in Physics, Proceedings of the International Sympo- 
siam Held in Honor of Professor Marcos Moshinsky at Cocoyoc, Morelos, Mrxico, June 
3-7, 1991, A. Frank and K. B. Wolf, eds., Springer-Verlag. 

Przanowski, M. (1983). Acta Physica Polonica B, 14, 663. 
Przanowski, M., and Maciolek-Nieds A. (1992). Journal of Mathematical Physics, 33, 

3978. 
Rainich, G. Y. (1925). Transactions of the American Mathematical Society, 27, 106. 
Salazar, H. I., Garcia, D. A., and Plebafiski, J. F. (1987). Journal of Mathematical Physics, 28, 

2171. 
Salazar, H. I., Garcia, D. A., and Plebafiski, J. F. (1989). Journal of Mathematical Physics, 30, 

2689. 
Witten, L. (1962). A geometric theory of the electromagnetic and gravitational fields, in 

Gravitation: An Introduction to Current Research, U Witten, ed., Wiley, New York. 


